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Recent calculations [S. Prager, AFOSR-2803 (June 1962)] of

upper bounds for the effective diffusion coefficient (or conducti-

C O vity) in porous media, in terms of certain statistical parameters

of the random geometry, are reformulated so as to apply speci-

O fically to a bed of spherical particles. The calculations are

simplified by considering an idealized bed in which centers are

S randomly situated without restricting the spheres to nonoverlap-

ping locations. The result, applicable to randomly overlapping

spheres of either uniform or nonuniform sizes, gives the upper

bound for the effective diffusion coefficient as ODo/[I -lin],
0 2

where D 0 is the actual diffusion coefficient in a fluid which fills

the void regions of the bed and 4 is the void fraction. This

?result is compared with experimental results by various investi-

gators for nonoverlapping spheres and also with the best upper

bound that can be calculated without taking the statistics of a

particular random geometry into account [Z. Hashin and

S. Shtrikman, 3. Appl. Phys. 33, 3125 (1962)].
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1. INTRODUCTION

Attempts at estimating the extent to which the apparent diffusion

coefficient is lowered when diffusion occurs in the open regions of a

porous medium, and analogous calculations related to the thermal or

electrical conductivity of inhomogeneous substances, are at least as
1

old as the writings of Maxwell, The purpose of the present work is

to show how previous theoretical estimates can be improved by the

utilization of statistical information about the random geometry of the

medium.

Maxwell's formula I gives the electrical conductivity of a medium

which contains a dilute suspension of spheres; as applied to nonconduct-

ing spheres the result, expressed in the terminology of our diffusion

problem, is

DID = /[D+.(1-.), (1)

where is the volume fraction not occupied by spheres, D is the
diffusion coefficient in the open space, and De is the effective diffusion

coefficient defined as the ratio of average flux to average concentration

gradient. It has recently been shown by Hashin and Shtrikman that

the right side of this equation, originally derived for -4 1, is an

upper bound for De/D in an isotropic medium for any value of even

when the solid portions of the medium are not spheres. Moreover

these authors showed that this bound is the closest that can be obtained

without providing additional statistical specification of the medium.

A method for introducing the required statistics has recently
3 .

been presented by Prager in terms of a variational formulation of the

diffusion problem. His results are applicable to a very general class

of isotropic porous media; however, the statistical data required for
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such applications are not yet available. Therefore, in the present work,

the variational approach is reformulated so as to apply specifically to a

bed of spheres. It will be seen that the appropriate statistical specifica-

tion can then be greatly simplified.

2. EFFECTIVE DIFFUSION COEFFICIENT

The bound on De ID0 , which is formulated in reference 3 in terms

of a trial concentration fluctuation c', is equivalent to the following

inequality in terms of a trial concentration c:

Do /r c

where g(r) is a random function of the position vector r, defined to

have the value zero in the solid regions and unity in the void regions of

the porous medium. The angular brackets denote an average taken over

a volume V which is large in comparison to the scale of the inhomo-

geneties of the medium. For example, the "porosity" or void fraction

* is given by

* = <g(r)> a (l/V) g(r) dr . (3)
w. 44'

2. 1 Trial Function for a Bed of Spheres

The trial concentration gradient which is now used in Eq. (2)

involves a sum of contributions from each sphere center, the i t h center

being located at the position r.. To this sum is added a constant

vector A in the direction of the average concentration gradient ( c>.

Thus
7c(r) = A + m Vf(i.i) (4a)

where .C. a r - r. and, for spheres of radius a
4*
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' 3

9 (4b)
" QA . /a 3 , /'< a.

This form of the contribution from each center is suggested by the

solution of the diffusion problem in which the obstruction is a single
1

isolated sphere; its use here insures that the upper bound for De

becomes exact as approaches unity.

The scalar multiplier m in Eq. (4a) is to be adjusted so as to

minimize the right side of Eq. (2) when substitution is made for 7 c

from (4). The result of this substitution, after some reduction ir.,olving

use of Eq. (3), can be written as

D 4A 2 + m 2  [~r) f( ) 2
< g (5)

Do  (1 + (4/3)w n m)Z

where n is the average density of sphere centers.

The optimum value of m, obtained by differentiating the right

side of Eq. (5) with respect to m, is

m 4rqnA2

Expanding the squared sum in the denominator and substituting the

resulting expression for m into Eq. (5) gives

De/Do < */q (6a)

where 22 2167r n *A /9

q,+\ + • ,- gj)),,,,(6b)

i j ,wAM /,
i~ j

The parameter q is related to a "tortuosity factor" which has been

discussed by Carman 4 and others.
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It is in the evaluation of the summations over sphere centers and

over pairs of centers, which appear in Eq. (6b), that the statistical

properties of the bed of spheres must be considered. In this connection,

one naturally thinks of a bed in which each center is at least one diameter

from its neighbors, but the evaluation of the pertinent sums is then far

from simple. However, it is possible, at least conceptually, to produce

a bed of spheres for which the calculations are greatly simplified; this

is achieved by removing the constraint on the locations of centers. 5

Thus, if centers are distributed at random, regardless of inter-

penetration of spheres, then the coordinates , . and /O. of the members

of an ij pair of centers in Eq. (6b) are completely uncorrelated and it is

seen from the form, Eq. (4b), of f(Oi) and f(jz) that the double sum in

(6b) vanishes.

The single sum in Eq. (6b) is also readily evaluated when the

spheres are allowed to overlap; for then the probability that a random

point is in a void region, even though the point is known to be in the

vicinity of the i center, is simply for all!0 i > a, Thus, when

Eq. (4b) is used for f(,p ), the single summation over, say, N spheres

can be expressed as

N ~~ ~ -Z 3 A . , 0 d - w O 7

3(A 8irnA2

To eliminate n and a from the final result, we note that

= exp (-4ra 3n/3); (8)

this expression for the void fraction of a bed of randomly overlapping

spheres is derived in the Appendix along with certain other interesting

statistical properties of this kind of porous medium.
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Substitution of Eq. (7) in (6b) and then using (8) gives

q 1 In (9a)

2.3 Nonuniform Spheres

Although Eq. (9a) was derived for a bed of uniform spheres, it

is interesting to note that the same result is obtained when the bed

contains overlapping spheres of several sizes. The generalized

derivation is a straightforward repetition of the procedure used above

for uniform spheres; we need only mention here the form of the trial

function and the expression for the void fraction.

The trial function which replaces Eq. (4) is

7c(r) = A +rm l \7fl( ;. ) +mZ Vf 2 ( i) +- (1Oa)
2 "

where

1 3
"A .- ,i 3 > a.

f() A <, 2,a (10b)
' \ [ A ',;Iaj 3 /  < a.

Thus there is an adjustable multiplier m. for each different sphere

radius a..
J

The required expression for the void fraction, calculated by

the same method as is described for uniform spheres in the Appendix, is

= exp [-(47/3) (nal + naa2 + --- ) ], (a3)

where nI , n,-- are the respective densities of sphere centers for

the several sizes.

3. DISCUSSION OF RESULTS

The result given by Eq. (9a) may be compared with the corres-

ponding expression for q from Maxwell's formula, Eq. (1):

q + 1 (1- 0. (9b)m 2
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We note, for example, that for dilute beds (1 - I) the two expres-

sions are identical to first order in (I - 4). A graphical comparison

of (9a) and (9b) is shown in Fig. 1.

The values ql and qm may be regarded as estimates q of the

true value q* defined such that D e/D0 a /q*. Then, from (6a), these

estimates are rigorous lower bounds for q* and the previously cited

theorem of Hashin and Shtrikman asserts that qm is the greatest

lower bound that can be derived without considering statistical descrip-

tions of the medium other than the void fraction. That a higher bound

is indeed obtained when additional statistics are introduced is illustrated

by the graph of q, vs. 4, shown as the upper curve in Fig. 1.

It is, of course, expected that use of sufficient statistical infor-

mation would provide bounds on q* which are sufficiently close to

furnish useful predictions of experimental results. Although the kind of

sphere bed for which Eq. (9a) provides a rigorous bound would be

difficult if not impossible to produce in the laboratory, it is nevertheless

interesting to compare calculated values of ql with measured values of

q* as obtained from more readily fabricated sphere beds in which

centers are separated by at least one diameter. Such measured values
4

by various investigators have been tabulated by Carman. These results

were obtained for various kinds of porous media among which were beds

of uniform spheres and also mixtures of two and three different sphere

sizes; the data for the nonuniform as well as uniform sphere beds are

plotted in Fig. 1. This comparison of experimental data for nonover-

lapping spheres with the theoretical estimate for overlapping spheres

(upper curve) cannot, of course, be regarded as a valid test of the latter;

it does provide, however, a good indication that the kind of rigorous
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bounds calculated here can indeed furnish useful estimates of effective

diffusion coefficients or conductivities.
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APPENDIX: VOID FRACTION AND TWO- AND THREE-

POINT CORRELATIONS FOR A BED OF OVERLAPPING SPHERES.

To obtain an expression for the void fraction 4 in terms of the

density of sphere centers n and the sphere radius a, we first calculate

the probability of placing N centers at random in a large finite volume V

in such a way that a smaller volume v contains no centers. Since each

random placement of a center is independent of the positions of the other

centers, this probability is [(V-v)/V] N = [I - (nv/N)]N . As N is made

larger and larger, holding n and v fixed, the probability P that the
v

volume v contains no centers becomes

lim nv N
P = (I - - ) = e n . (Al)v N-) :: N

Now 4 can be regarded as the probability that a random point is

not contained by any sphere in the bed, or, equivalently, as the proba-

bility that the portion of the bed which lies within a distance a from the

random point contains no centers. Hence 0 is given by Eq. (Al) with

v = 4va 3/3, which is the result given in Eq. (8).



It is interesting to note that Eq. (Al) also provides an expression

for the two-point correlation function S(r) defined as the probability that

two points separated by a distance r both lie in void regions. This

or closely related functions have been used in the previously-cited

calculation of diffusion in porous media 3 and in calculations of x-ray

scattering in random media6 and of viscous flow of fluids through porous

media. 7,8 It can be obtained for a bed of overlapping spheres by setting

v in Eq. (Al) equal to V1 (r) as defined in reference 8. The result is

(exp[ 4a 3n r -+ r r < Za
3 4a 16a

S (r) .(AZ)

exp [ ] r > 2a
3

This form of the two-point correlation, since it is derived for a specified

(albeit artificial) random geometry, may be preferable to the simpler
6

exponential form discussed by Debye, Anderson, and Brumberger; it

is not certain whether there is any three-dimensional geometry which is

consistent with the kind of randomness postulated by these authors.

The three-point correlation function G(r, r') has also been used
.$ 411

in previous calculations for porous media. 3,7,8 It is obtained by setting

v in (Al) equal to V, (r, r') as defined in reference 8. The latter quantity

represents the volume enclosed by three spheres with centers at the

vertices of a triangle with sides r, r', and r - r'; the cumbersome

expression for this volume, involving various forms for various kinds

of r, r' configurations, will not be repeated here.



FIGURE CAPTION

Fig. 1, Tortuosity parameter q =6D/D vs. void fractiono

for a bed of overlapping spheres. Upper curve - eq. (9a), lower

curve - eq. (9b). The plotted points represent experimental results

for nonoverlapping spheres from reference 4: * - bed of uniform

spheres; 0 - mixtures of spheres of more than one size.

Both curves are theoretical lower bounds; the upper curve

illustrates the improvement obtained by incorporating in the calcula-

tion a statistical description of the porous medium.
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